CS 428 Week \#5 Readings

WINTER 2020, WEEK \#5 BRUCE F. WEBSTER

- Root causes of software project delays a nd failure
> Our techniques of estimation are [still] poorly developed
- Our estimation techniques confuse effort with progress (people \& months are interc hangeable)
- Because we are uncertain of our estimates, we often lack the courage to say we don't know when we'll be done
- Schedule progress is poorly monitored and hard to measure
- When the schedule slips, the impulse is to add staff, which is "like dousing a fire with gasoline"
- What have you observed?

The Mythical Man-Month, Ch. 2: The Mythical Man-Month

- "All programmersare optimists"
\downarrow Only optimists build complex systems. (A dele G old berg)
- We too often assume each task will take only as long asit "ought" to take
- The probability that a given task will go well may be relatively high, but a meaningful software project comprises hundreds if not thousands of such tasks
- Thus: It is very easy to lose a day; it is impossible to make it up.
- Additional complication: we tend to focus on the easy tasks first and defer the diffic ult problems until late in the project - illusion of great progress
- What are some other ways in which we tend to be overly optimistic?

MMM Cha pter 2 (cont.)

> The Man-Month

- The "man-month" asa unit for measuring the size of a software engineering project is a dangerous and deceptive myth
- Sequential constra ints in development as well as communic ation requirements make the "man-month" concept unrea listic (a nd selfdeluding)
- Adding a person to a project not only inc reasesthe communication paths a nd requirements, it also coststime forbringing the new person up to speed
- Thus, adding more people lengthens, not shortens, the sc hedule (Brooks Law)
What do you think the impact of personnel tumover is?

MMM Chapter 2 (cont.)

- Component debugging and system testing forces sequential constraints
- Testing is usually the most mis-scheduled (underestimated) part of programming
- Brooks' nule of thumb: $1 / 3^{\text {rd }}$ planning, $1 / 6^{\text {th }}$ coding, $1 / 4^{\text {th }}$ component test, 1/44 h $^{\text {th }}$ stem test
- "I found that few allowed one-half the project schedule for testing, but that most did indeed spend half of the actual schedule for that pupose."
- The 90/90 rule: 90% of the work takes the first 90% of the schedule, and the remaining 10% of the work takes the other 90% of the schedule
- Underestimation of system testing (integration, end-to-end, performance, stress) is particularly damaging since it shows up right when project completion is expected

MMM Chapter 2 (cont.)

- Gutless estimating
- Endemic in our industry
- Completion date is picked because "we have to have it by then" orto meet a "market opportunity", not based on any rational basis or rea listic estimate
- Upper management often does not want to hear a realistic estimate
- Regenerative schedule disaster
- So, what happens when the project is late? "Add people to it. Work longer hours." Both are counter-productive.
- Only real solution: slip deadline and/ordrop features.
> Observations?

MMM Cha pter 2 (cont.)

- What they did have:
- A clear mission
- Manpower
- Materials
- Time
- Technology
- What they lacked?
- Communication
- And, as a consequence, organization
- Yourobservations/experience?

The Mythical Man- Month, Ch. 7: Why Did the Tower of Babel Fa il?

- Project workbook: replaced today by online organization (e.g., your project wiki/repo)
- Communication challenge: with n workers on a project, there are $\left(n^{2}-n\right) / 2$ possible interfacesand 2^{n} possible sets of workers
- Solution: Division of la bor/specia lization of function
- Key: project manager and chief architect need to be different people
- Their priorities c onflict
- Chief architect will tend to be overly optimistic

MMM Chapter 7 (cont.)

- "How doesa project get to be a yearlate? One day at a time."
- Milestones must be concrete, specific, measura ble events
- The myth of the "Oh, we're about XX\% done" sta tement
-90/90 rule: 90% of the project takes the first 90% of the schedule; the remaining 10% of the project takes the other 90% of the schedule.
- The "three weeks before dead line" rule:
- "Underestimates [of project schedule] do not change significantly during the activity until about three weeks before the scheduled completion."
- Need fora critical-path schedule (e.g., PERT) to show the critical path
- Observations?

The Mythic al Man-Month, Ch.14: Hatching a Catastrophe

- Not being willing to pass bad newsuphill
- Webster: The Themocline of Truth (2008)
- Not knowing the newsis bad
- Webster: Lies, Da mned Lines, a nd Metric s (parts I through III) (2008)
> Project progress metric s need to be objective, repeatable, and informative
- Weinberg's Law of Metric s: That which gets mea sured gets fudged.
- The Metric Law of Least Resistance: "The more human effort required to calculate a metric, the less often (and less accurately) it will be calculated, until it is abandoned or ignored altogether."
> Thoughtsand observations?

MMM C ha pter 14 (c ont.)

- "Work expands to fill the time a llotted." - was actually a satinical observation
- "Parkinson's Law almost certa inly doesn't a pply to your people."
- They have too many other things they want to do.
- Bad estima testend to lower produc tivity; good/credible estimates tend to raise it
- Death march vs. achievable goal
- Organizational busy work tends to expand to fill the working day
- Observationsand feedback?

Peopleware, Ch 5: Parkinson's Law Revisited

- Same problem as project estimation, but for a project already underway
- Most organizationsare very bad at predicting when a given project will ship
- Usually rely on 'metrics' that a ren't at all useful
- A meaningful, useful project metric has three key qualities:
- Informative/predic tive: tells you something important and/or when you will deliver
- Objective: should yield the same value regardless of who is doing the measuring
- Automated: can be done quickly and without direct human intervention
- Almost all major metric sused in IT projects lack one, two, or all three qualities

Lies, damned lies, and project metrics [Part l, Part II, Part III] (Ba seline, 2008)

- Weinberg's Law of Metrics: "That which gets mea sured, gets fudged."
- We will distort work and reporting to achieve required or valued metrics
- The Metric Law of 90s: "The first 90 percent of a development project takes 90 percent of the sc hedule. The remaining 10 percent of the project takes the other 90 percent of the schedule."
- We tend to focuson low-hanging fruit in orderto make metric slook good
- The Metic Law of least Resistance: "The more human effort required to calculate a metric, the less often (and less accurately) it will be calculated, until it is a bandoned or ignored altogether."
- Hence the need for automation (cf. classic joke about drunk looking for keys)
- Must-read book: Measuring and Managing Performance in Organizations by Robert D. Austin (Dorset House, 1996)

WEB \#4 (cont.): Metric "La ws"

Web \#4 (cont.):
Visual Assessment in Real Life
\downarrow Why is project completion so hard to predict?

- The a mount of a nalysis (gathering relevant subject-matter information) that still has to oc cur
- The a mount of invention (novel problem solving) that still has to occur (cf Armour, as usual)
- The a mount of disc overy (e.g., running into roadblocks and dead ends) that still has to oc cur (again, Armour)
The adequacy of the curent architecture, design and implementation
- The a mount of actual coding that still has to occur
- The a mount of quality eng ineering (testing, reviews, etc.) that still has to occur
> Unexpected tumoveramong engineening personnel
- Changes in market requirements and/or opportunities
- Changes in extemal systems upon which you depend

WEB \#4 (c ont.): The challenge

- First, instrumentation: automated collection of wide range of metrics/characteristic s over time
- Result: time-stamped history for each metric/c haracteristic
- These should be automated and objective
- Can be tied to configuration management system and run on a regular basis
- Second, heuristics: use data collected
- After project is done and with known timeline, use Bayesian a nalysis to see which combination of metrics best antic ipate milestone completion
- Use human analysis as well to look for comelations between metrics and actual progress (or lack thereof)
- Refine set of metrics/characteristics for next project and see how well they predict progress
- NOTE: Check out gitprime.com for a system that a ppears to do just this

WEB \#4 (cont.):
 Potential a pproach to useful metrics

