
CS 428

Fall 2021

Bruce F. Webster

HEURISTICS FOR 
SYSTEMS-LEVEL 
ARCHITECTING



 “heuristic” = from the Greek heuriko, “to discover” (hence: “Eureka! I 
have found it!”) – something to help guide you to a solution
 In AI, a heuristic is typically a goal-seeking algorithm or principle
 Here: principles, laws, rules, maxims or rules of thumb to remember in 

creating and building a system of any kind (not just information 
technology)

 D = descriptive, that is, telling you what can happen

 P = prescriptive, this is, telling you what you should be doing to help 
avoid the problems

 Source: The Art of Systems Architecture (3rd ed.) by Mark W. Maier 
and Eberhardt Rechtin (CRC Press, 2009)

 These slides only cover a subset from the document

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 2

http://bfwa.com/itc446/2020f/SysArchHeuristics.pdf


 Performance, cost, and schedule cannot be specified independently; 
at least one of the three must depend upon the other

 Efficiency is inversely proportional to universality [the reuse 
problem]

 The most reliable part on an airplane is the one that isn’t there

 If the politics don’t fly, the hardware never will

 In introducing technological and social change, how you do it is often 
more important than what you do

 There is no such thing as a purely technical problem

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 3



 The beginning is the most important part of the work. (Plato)

 In architecting a new program, all the serious mistakes are made the 
first day. (Spinrad)

 Success is defined by the beholder, not by the architect.

 Risk is also defined by the beholder, not by the architect.

 Four questions need to be answered as a self-consistent set if a system 
is to succeed economically, namely: Who benefits? Who pays? Who 
provides? and, as appropriate, Who loses?

 Don’t assume that they original statement of the problem is 
necessarily the best, or even the right, one. 

 Do the hard parts first.

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 4



 “It ought to be remembered that there is nothing more difficult to take in hand, more 
perilous to conduct, or more uncertain in its success, than to take the lead in the introduction 
of a new order of things. Because the innovator has for enemies all those who have done well 
under the old conditions, and lukewarm defenders in those who may do well under the new. 
This coolness arises partly from fear of the opponents, who have the laws on their side, and 
partly from the incredulity of men, who do not readily believe in new things until they have 
had a long experience of them.”


― Niccolò Machiavelli, The Prince

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 5

https://www.goodreads.com/work/quotes/1335445


 If you can’t analyze it, don’t build it.

 Modeling is a craft and at times an art.

 A model is not reality.

 The map is not the territory.

 Any war game, systems analysis, or study whose results can’t be easily 
explained on the back of an envelope is not just worthless; it is 
probably dangerous.

 If you can’t explain it in five minutes, either you don’t understand it or 
it doesn’t work. 

 A good solution somehow looks nice.

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 6



 In any resource-limited situation, the true value of a given service or 
product is determined by what one is willing to give up to obtain it.

 When choices must be made with unavoidably inadequate 
information, choose the best available and then watch to see whether 
future solutions appear faster than future problems. ... If not, go back 
and choose again.

 The choice between architectures may well depend upon what set of 
drawbacks the client can handle best.

 Every once in a while you have to go back and see what the real world 
is telling you. 

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 7



 Group elements that are strongly related to each other; separate 
elements that are unrelated. 

 Subsystem interfaces should be drawn so that each subsystem can be 
implemented independent of the specific implementation of the 
subsystems to which it interfaces.

 Choose a configuration with minimal communications between 
subsystems.

 Choose the elements so that they are as independent as possible; that 
is, elements with low external complexity (low coupling) and high 
internal complexity (high cohesion).

 The optimum number of architectural elements is the amount that 
leads to distinct action, not general planning. 

 System structure should resemble functional structure. 

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 8



 Design the structure with good “bones”

 It is inadequate to architect up to the boundaries or interfaces of a system; one 
must architect across them

 Be prepared for reality to offer a few interfaces of its own

 Do not slice through regions where high rates of information exchange are 
required [back to high cohesion / low coupling]

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 9



 Relationships among the elements are what give systems their added 
value

 The greatest leverage – and the greatest dangers – of systems 
architecting are at the interfaces

 Be sure to ask the question, “What is the worst thing that other 
elements could do to you across the interface?”

 The product [system] and the process [human workflow] must match. 
Or, by extension, a system architecture cannot be considered 
complete lacking a suitable match with the process architecture

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 10



 As time to delivery decreases, the threat to functionality increases.

 The number of [unknown] defects remaining in a system after a given 
level of test or review is proportional to the number found during that 
test or review [bugs closed/new bugs found metric]

 The test setup for a system is itself a system.

 The least expensive and most effective place to find and fix a problem 
is at its source.

 Quality can’t be tested in; it has to be built in.

 High-quality, reliable systems are produced by high-quality 
architecting, engineering, design and manufacture, not by inspection, 
test, and rework.

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 11



 System quality is defined in terms of customer satisfaction, not 
requirements satisfaction.

 If you think your design is perfect, it’s only because you haven’t shown 
it to someone else.

 “Proven” and “state of the art” are mutually exclusive qualities.

 The reverse of diagnostic techniques are good architectures.

 Before it’s tried, it’s opinion. After it’s tried, it’s obvious.

 The first quick look analyses are often wrong.

 Chances of recovery from a single flaw/failure are pretty good. 
Recovery from two or more independent failures is unlikely in real 
time and uncertain in any case.

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 12



 If you don’t understand the existing system, you can’t be sure you’re rearchitecting 
a better one.

 When implementing a change, keep some elements constant to provide an anchor 
point for people to cling to.

 Before the change, it is your opinion. After the change, it is your problem.

 Unless constrained, rearchitecting has a natural tendency to proceed unchecked 
until it results in a substantial transformation of the system.

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 13



 CRITICAL: if you don’t have a GitHub account already, got to 
GitHub.com and register for one. Then DM your GitHub user name 
(NOT your ID number or your email address)

 Log into the class Github (https://github.com/cs428TAs/f2021/wiki)
 Sometime this week: create a proposed project and/or endorse an existing 

one
 By next Monday (09/06): vote on at least three (3) projects
 Through next week, we will try to organize projects and teams
 We will finalize projects and teams during class in two weeks (09/13)

 Join cs428-f21.slack.com if you haven’t already

 Readings for next two weeks (by 09/13):
 “The Five Orders of Ignorance”, Philip Armour (PDF on the website) 
 “Heuristics for System Level Architecting”, Meier & Rechtin (PDF here)
 Mythical Man-Month, chapters 1, 2, 4, 5, 7, 11, 14

08/30/21CS 428 - FALL 2020 – BRUCE F. WEBSTER – MONDAYS, 2:00 - 3:30 PM 14

http://cs428.cs.byu.edu/wp-content/uploads/2018/08/Armour-Orders-of-Ignorance.pdf
http://bfwa.com/itc446/2020f/SysArchHeuristics.pdf

	Heuristics for systems-level architecting
	What are these?
	Multitask Heuristics
	Scoping and Planning
	Machiavelli, “The Prince”
	Modeling
	Prioritizing (Trades, options, choices)
	Aggregating (“chunking”)
	Partitioning (Decompositioning)
	Integrating
	Certifying (System Integrity, Quality, and Vision)
	Assessing Performance, Cost, Schedule, and Risk
	Re-Architecting, Evolving, Modifying, and Adapting
	To do for the next two weeks

