
CS 428
Facts & Fallacies of

Software Engineering
(chapters 2-3)

WINTER 2021

Bruce F. Webster

Chapter 2, Section 7: Maintenance

 #41: Maintenance typically consumes 40% to 80% (60% average) of software
costs. Therefore, it is probably the most important life cycle phase of
software.

 Also, large organizations can spent 50% to 80% of their entire IT budget on
maintenance

 Yet it is often given low priority and attention

 “Old hardware becomes obsolete; old software goes into production every night.”

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 2

Chapter 2, Section 7: Maintenance

 #42: Enhancement is responsible for roughly 60% of software maintenance
costs. Error correction is roughly 17%. Therefore, software maintenance is
largely about adding new features to old software, not fixing it.

 “The 60/60 rule: 60% of software’s dollar is spent on maintenance, and 60% of that
maintenance is enhancement. Enhancing old software is, therefore, a big deal.”

 And it represents roughly 1/3rd (36%) of software’s total budget.

 17% on fixings bugs

 18% on adaptive maintenance (getting software to work as environment changes)

 5% on preventive maintenance/refactor (paying down technical debt)

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 3

Chapter 2, Section 7: Maintenance

 #43: Maintenance is a solution, not a problem

 Must like SQA, maintenance is sort of a “second-class” domain

 Yet with proper investment of personnel, time, and tools, maintenance often
becomes a far less expensive and less risky option than wholesale replacement

 Maintenance of existing systems can also avoid the “I hate change” roadblock

 But upper management often succumbs to the lure of the new car smell

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 4

Chapter 2, Section 7: Maintenance

 #44: In examining the tasks of software development vs software
maintenance, most of the [lifecycle] tasks are the same – except for the
additional maintenance task of “understanding the existing product.” This
task consumes roughly 30% of of the total maintenance time and is the
dominant maintenance activity. Thus it is possible to claim that maintenance
is a more difficult task than development.
 Key challenge: design a solution within the context of the existing product’s

design.

 Key challenge: figuring out what exploration and tradeoffs led to the current
design.

 Key challenge: finding out that the current design can’t support the proposed
design.

 Cf. Webster, “Controlling IT Costs: Using a Maintenance Architect” [link]

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 5

http://brucefwebster.com/2013/07/22/controlling-it-costs-using-a-maintenance-architect/

Chapter 2, Section 7: Maintenance

 #45: Better software engineering leads to more maintenance, not less.

 The better a given system is designed and built, the longer it will stay in
production.

 The better a given system is designed and built, the easier it is to modify.

 Therefore, a well-designed and well-built system will require more ‘maintenance’ –
in terms of enhancements and lifespan – than a bad one.

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 6

Chapter 3 Quality
Section 1: Quality

 #46: Quality is a selection of attributes

 For Glass: portability, reliability, efficiency, human engineering, testability,
understandability, modifiability

 Mine: reliability, performance, functionality, compatibility, lifespan, deployment,
support, cost

 Priorities and acceptable levels vary based on the project (and, frankly, your definition
of those terms)

 #47: Quality is not user satisfaction, meeting requirements, meeting cost and
schedule targets, or reliability[!]

 Glass acknowledges he’s contradicting himself a bit here on reliability – frankly, I think
he’s a bit incoherent

 My definition of reliability: the system must carry out its functions without causing
unacceptable errors or having an unacceptable downtime.

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 7

Chapter 3 Section 2: Reliability

 #48: There are errors that most programmers tend to make.

 These range from the “if (a = b)” syntactic typos to omitting what glass calls “deep
design details”

 This is one reason why the open-source assertion “given enough eyes, all bugs are
shallow” has turned out not to be (sufficiently) true

 #49: Errors tend to cluster

 Various studies show that the majority of errors tend to occur in a small portion of
the code

 Glass doesn’t give a reason; my personal opinion is that this is a symptom of the
“deferring hard problems” pitfall

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 8

Chapter 3 Section 2: Reliability

 #50: There is no single best approach to error removal.

 Finding, tracking down, and repairing software defects is a very intensely
intellectual and time-consuming exercise. There is no ‘silver bullet’.

 #51: Residual errors will always persist. The goal should be to minimize or
eliminate severe errors.

 Hence my definition of ‘reliability’: the system must carry out its functions without
causing unacceptable errors or having an unacceptable downtime.

 You also need to distinguish between the severity of the error and the likelihood of
it occurring (and thus having an impact)

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 9

Chapter 3 Section 2: Efficiency

 #52: Efficiency stems more from good design than from good coding.

 Think through likely bottlenecks beforehand; minimize your dependency upon
them.

 Understand that the memory/code tradeoff (pre-computed vs procedurally-
derived, cached vs fetch on demand) is very real.

 “Premature [code] optimization is the root of all evil.” – Don Knuth

 Make sure you understand how to correctly solve the problem before trying to optimize.

 #53: High-order languages, with appropriate compiler optimization, can be
about 90% as efficient as comparable assembler code.

 Similar debate about bytecode/interpreted languages vs compiled languages.

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 10

Chapter 3 Section 2: Efficiency

 #52: Efficiency stems more from good design than from good coding.
 Think through likely bottlenecks beforehand; minimize your dependency upon them.

 “Premature [code] optimization is the root of all evil.” – Don Knuth
 Make sure you understand how to correctly solve the problem before trying to optimize.

 #53: High-order languages, with appropriate compiler optimization, can be about
90% as efficient as comparable assembler code.
 Similar debate about bytecode/interpreted languages vs compiled languages.

 #54: There are tradeoffs between size and time optimization. Often, improving
one degrades the other.
 Understand that the memory/code tradeoff (pre-computed vs procedurally-derived,

cached vs fetch on demand) is very real.

 On the other hand, excessive use of memory can sometimes lead to poor speed
performance as well.

03/22/2021CS 428 -WINTER 2021 – BRUCE F. WEBSTER – MONDAYS, 300 – 530 PM 11

	CS 428�Facts & Fallacies of Software Engineering (chapters 2-3)
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 3 Quality�Section 1: Quality
	Chapter 3 Section 2: Reliability
	Chapter 3 Section 2: Reliability
	Chapter 3 Section 2: Efficiency
	Chapter 3 Section 2: Efficiency

