
CS 428
FACTS & FALLACIES OF

SOFTWARE ENGINEERING
(CHAPTERS 2-3)

Webster 2022

Bruce F. Webster

CHAPTER 2, SECTION 7: MAINTENANCE

• #41: Maintenance typically consumes 40% to 80% (60% average) of software costs.
Therefore, it is probably the most important life cycle phase of software.

• Also, large organizations can spent 50% to 80% of their entire IT budget on maintenance

• Yet it is often given low priority and attention

• “Old hardware becomes obsolete; old software goes into production every night.”

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 2

CHAPTER 2, SECTION 7: MAINTENANCE

• #42: Enhancement is responsible for roughly 60% of software maintenance costs.
Error correction is roughly 17%. Therefore, software maintenance is largely about
adding new features to old software, not fixing it.

• “The 60/60 rule: 60% of software’s dollar is spent on maintenance, and 60% of that
maintenance is enhancement. Enhancing old software is, therefore, a big deal.”

• And it represents roughly 1/3rd (36%) of software’s total budget.

• 17% on fixings bugs

• 18% on adaptive maintenance (getting software to work as environment changes)

• 5% on preventive maintenance/refactor (paying down technical debt)

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 3

CHAPTER 2, SECTION 7: MAINTENANCE

• #43: Maintenance is a solution, not a problem

• Must like SQA, maintenance is sort of a “second-class” domain

• Yet with proper investment of personnel, time, and tools, maintenance often becomes a far
less expensive and less risky option than wholesale replacement

• Maintenance of existing systems can also avoid the “I hate change” roadblock

• But upper management often succumbs to the lure of the new car smell

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 4

CHAPTER 2, SECTION 7: MAINTENANCE

• #44: In examining the tasks of software development vs software maintenance, most
of the [lifecycle] tasks are the same – except for the additional maintenance task of
“understanding the existing product.” This task consumes roughly 30% of of the total
maintenance time and is the dominant maintenance activity. Thus it is possible to
claim that maintenance is a more difficult task than development.

• Key challenge: design a solution within the context of the existing product’s design.

• Key challenge: figuring out what exploration and tradeoffs led to the current design.

• Key challenge: finding out that the current design can’t support the proposed design.

• Cf. Webster, “Controlling IT Costs: Using a Maintenance Architect” [link]

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 5

http://brucefwebster.com/2013/07/22/controlling-it-costs-using-a-maintenance-architect/

CHAPTER 2, SECTION 7: MAINTENANCE

• #45: Better software engineering leads to more maintenance, not less.

• The better a given system is designed and built, the longer it will stay in production.

• The better a given system is designed and built, the easier it is to modify.

• Therefore, a well-designed and well-built system will require more ‘maintenance’ – in
terms of enhancements and lifespan – than a bad one.

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 6

CHAPTER 3 QUALITY
SECTION 1: QUALITY

• #46: Quality is a selection of attributes

• For Glass: portability, reliability, efficiency, human engineering, testability, understandability, modifiability

• Mine: reliability, performance, functionality, compatibility, lifespan, deployment, support, cost

• Priorities and acceptable levels vary based on the project (and, frankly, your definition of those terms)

• #47: Quality is not user satisfaction, meeting requirements, meeting cost and schedule targets, or
reliability[!]

• Glass acknowledges he’s contradicting himself a bit here on reliability – frankly, I think he’s a bit incoherent

• My definition of reliability: the system must carry out its functions without causing unacceptable errors or
having an unacceptable downtime.

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 7

CHAPTER 3 SECTION 2: RELIABILITY

• #48: There are errors that most programmers tend to make.

• These range from the “if (a = b)” syntactic typos to omitting what Glass calls “deep design
details”

• This is one reason why the open-source assertion “given enough eyes, all bugs are
shallow” has turned out not to be (sufficiently) true

• #49: Errors tend to cluster

• Various studies show that the majority of errors tend to occur in a small portion of the code

• Glass doesn’t give a reason; my personal opinion is that this is a symptom of the
“deferring hard problems” pitfall

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 8

CHAPTER 3 SECTION 2: RELIABILITY

• #50: There is no single best approach to error removal.

• Finding, tracking down, and repairing software defects is a very intensely intellectual and
time-consuming exercise. There is no ‘silver bullet’.

• #51: Residual errors will always persist. The goal should be to minimize or eliminate
severe errors.

• Hence my definition of ‘reliability’: the system must carry out its functions without causing
unacceptable errors or having an unacceptable downtime.

• You also need to distinguish between the severity of the error and the likelihood of it
occurring (and thus having an impact)

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 9

CHAPTER 3 SECTION 2: EFFICIENCY

• #52: Efficiency stems more from good design than from good coding.

• Think through likely bottlenecks beforehand; minimize your dependency upon them.

• Understand that the memory/code tradeoff (pre-computed vs procedurally-derived,
cached vs fetch on demand) is very real.

• “Premature [code] optimization is the root of all evil.” – Don Knuth

• Make sure you understand how to correctly solve the problem before trying to optimize.

• #53: High-order languages, with appropriate compiler optimization, can be about
90% as efficient as comparable assembler code.

• Similar debate about bytecode/interpreted languages vs compiled languages.

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 10

CHAPTER 3 SECTION 2: EFFICIENCY

• #54: There are tradeoffs between size and time optimization. Often, improving one
degrades the other.

• Understand that the memory/code tradeoff (pre-computed vs procedurally-derived,
cached vs fetch on demand) is very real.

• On the other hand, excessive use of memory can sometimes lead to poor speed
performance as well.

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 11

FOR NEXT WEEK (03/21)

• For this Saturday (03/19)

• LAST PODCAST (#5) due

• Team Status Report due

• Next Monday (03/21)

• Work-in-progress Project Demos!

• Midterm Review (again)

• F&FOSE chapters 4-7

• Finish Webster #6

03/14/2022CS 428 - WINTER 2022 – BRUCE F. WEBSTER – MONDAYS 3:00 – 4530 PM 12

	CS 428�Facts & Fallacies of Software Engineering (chapters 2-3)
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 3 Quality�Section 1: Quality
	Chapter 3 Section 2: Reliability
	Chapter 3 Section 2: Reliability
	Chapter 3 Section 2: Efficiency
	Chapter 3 Section 2: Efficiency
	FOR NEXT WEEK (03/21)

