
Heuristics for 
systems-level 
architecting
CS 428
WINTER 2023
BRUCE F. WEBSTER



What are these?

 “heuristic” = from the Greek heuriko, “to discover” (hence: “Eureka! I 
have found it!”) – something to help guide you to a solution
 In AI, a heuristic is typically a goal-seeking algorithm or principle

 Here: principles, laws, rules, maxims or rules of thumb to remember in 
creating and building a system of any kind (not just information 
technology)

 D = descriptive, that is, telling you what can happen

 P = prescriptive, this is, telling you what you should be doing to help 
avoid the problems

 Source: The Art of Systems Architecture (3rd ed.) by Mark W. Maier 
and Eberhardt Rechtin (CRC Press, 2009)

 These slides cover only a small subset from the document

2

http://bfwa.com/itc446/2020f/SysArchHeuristics.pdf


Multitask Heuristics
 Performance, cost, and schedule cannot be specified 

independently; at least one of the three must depend upon the 
other

 Efficiency is inversely proportional to universality [the reuse 
problem]

 The most reliable part on an airplane is the one that isn’t there
 There is no such thing as a purely technical problem

3



Scoping and Planning

 The beginning is the most important part of the work. (Plato)
 In architecting a new program, all the serious mistakes are made 

the first day. (Spinrad)
 Success is defined by the beholder, not by the architect.
 Four questions need to be answered as a self-consistent set if a 

system is to succeed economically, namely: Who benefits? Who 
pays? Who provides? and, as appropriate, Who loses?

 Do the hard parts first.

4



Interlude: Machiavelli
 “It ought to be remembered that there is nothing more difficult to 

take in hand, more perilous to conduct, or more uncertain in its 
success, than to take the lead in the introduction of a new order of 
things. Because the innovator has for enemies all those who have 
done well under the old conditions, and lukewarm defenders in 
those who may do well under the new. This coolness arises partly 
from fear of the opponents, who have the laws on their side, and 
partly from the incredulity of men, who do not readily believe in 
new things until they have had a long experience of them.”



― Niccolò Machiavelli, The Prince

5

https://www.goodreads.com/work/quotes/1335445


Modeling

 If you can’t analyze it, don’t build it.
 A model is not reality.
 The map is not the territory.
 If you can’t explain it in five minutes, either you don’t understand 

it or it doesn’t work. 
 A good solution somehow looks nice.

6



Prioritizing (Trades, options, choices)

 In any resource-limited situation, the true value of a given service 
or product is determined by what one is willing to give up to 
obtain it.

 The choice between architectures may well depend upon what 
set of drawbacks the client can handle best.

 Every once in a while you have to go back and see what the 
real world is telling you. 

7



Aggregating (“chunking”)

 Group elements that are strongly related to each other; 
separate elements that are unrelated. 

 Choose the elements so that they are as independent as 
possible; that is, elements with low external complexity (low 
coupling) and high internal complexity (high cohesion).

 System structure should resemble functional structure. 

8



Partitioning (Decompositioning)

 Design the structure with good “bones”
 It is inadequate to architect up to the boundaries or interfaces of a 

system; one must architect across them
 Be prepared for reality to offer a few interfaces of its own

9



Integrating

 Relationships among the elements are what give systems their 
added value

 The greatest leverage – and the greatest dangers – of systems 
architecting are at the interfaces

 Be sure to ask the question, “What is the worst thing that other 
elements could do to you across the interface?”

10



Certifying (System Integrity, Quality, and Vision)

 As time to delivery decreases, the threat to functionality 
increases.

 The least expensive and most effective place to find and fix a 
problem is at its source.

 Quality can’t be tested in; it has to be built in.
 High-quality, reliable systems are produced by high-quality 

architecting, engineering, design and manufacture, not by 
inspection, test, and rework.

11



Assessing Performance, Cost, Schedule, & Risk

 System quality is defined in terms of customer satisfaction, not 
requirements satisfaction.

 If you think your design is perfect, it’s only because you haven’t 
shown it to someone else.

 “Proven” and “state of the art” are mutually exclusive qualities.

12



Re-Architecting, Evolving, Modifying, & Adapting

 If you don’t understand the existing system, you can’t be sure you’re 
rearchitecting a better one.

 When implementing a change, keep some elements constant to 
provide an anchor point for people to cling to.

 Before the change, it is your opinion. After the change, it is your 
problem.

13


	Heuristics for systems-level architecting
	What are these?
	Multitask Heuristics
	Scoping and Planning
	Interlude: Machiavelli
	Modeling
	Prioritizing (Trades, options, choices)
	Aggregating (“chunking”)
	Partitioning (Decompositioning)
	Integrating
	Certifying (System Integrity, Quality, and Vision)
	Assessing Performance, Cost, Schedule, & Risk
	Re-Architecting, Evolving, Modifying, & Adapting

