
CS 428
Webster #6
Part I
WINTER 2023
BRUCE F. WEBSTER



Webster #6: Pitfalls of 
Modern Software Engineering 

 Derived from my 1995 book Pitfalls of Object-Oriented Development
 These initial chapters are universal and apply to adopting any new 

technology or methodology (“TOM”)

2



Managerial pitfalls
 Using the wrong developers

 Using the wrong metrics (or none at all)

 Lying to yourself and others

 Not identifying and managing risks

 Adopting a technology or methodology without well-defined objectives

 Misjudging relative costs

 Allowing new features to creep (or pour) in

 Allowing the specification to drift or change without agreement

 Attempting too much, too fast, too soon

 Abandoning good software engineering practices

3

http://bfwa.com/2008/06/23/pitfall-using-the-wrong-developers/
http://bfwa.com/2008/06/23/pitfall-using-the-wrong-metrics-or-none-at-all/
http://bfwa.com/2008/06/23/pitfall-lying-to-yourself-and-others/
http://bfwa.com/2008/06/09/pitfall-not-identifying-and-managing-risks/
http://bfwa.com/2008/05/26/pitfall-adopting-a-technology-or-methodology-without-well-defined-objectives/
http://bfwa.com/2008/06/09/pitfall-misjudging-relative-costs/
http://bfwa.com/2008/06/03/pitfall-allowing-new-features-to-creep-or-pour-in/
http://bfwa.com/2008/06/03/pitfall-allowing-the-specification-to-drift-or-change-without-agreement/
http://bfwa.com/2008/05/30/pitfall-attempting-too-much-too-fast-too-soon/
http://bfwa.com/2008/05/29/pitfall-abandoning-good-software-engineering-practices/


Using the Wrong Developers

 Issue: gaps in TEPES (talent, experience, professionalism, education, 
skills), particularly with relation to the TOMs in use

 Symptoms: constant core issues with architecture, design, code 
quality

 Consequences: inability to ship or poor quality of delivered product
 Detection: you need to have someone who is qualified and whose 

opinion you trust
 Extraction: really hard, but you need to find the right people and/or 

train up the ones you have 
 Prevention: hire better and monitor more closely

4



Using the wrong metrics

 Issue: most metrics are of dubious value; more so for a new TOM
 Symptoms: lack of correlation between metrics and actual progress; use of 

metrics as a management cudgel.
 Consequences: time and effort are spent gather useless or misleading metrics. 

Developer effort is focused on the wrong things.
 Detection: find out which metrics are being used and whether they have any 

predictive or informative value.
 Extraction: drop all metrics and investigate which, if any, would inform you.
 Prevention: define what metrics (if any) will be used at the start. Remember: 

they should be automated, objective, and informative. 

5



Lying to yourself and others

 Issue: self-delusion and group delusion are far too common in 
software projects, due to optimism, positive thinking, and bad 
management. A new TOM often encourages such thinking.

 Symptoms: answer, irritation, disbelief when someone questions the 
delusion.

 Consequences: constant schedule slips, unexpected roadblocks, 
internal dissention.

 Detection: ask “What are we fooling ourselves about?” 
 Extraction: need to re-plan and reschedule.
 Prevention: do a “pre-mortem” at the start of the project, asking all 

the ways in which it could be late or fail.

6



How project planning often goes: 7



Not Identifying and Managing Risks

 Issue: overlooking the risks involved in adopting a new TOM
 Symptoms: no one wants to talk about the risks. Lots of time spent 

putting out fires and explaining problems (and slips) to upper 
management.

 Consequences: slipped schedules, missed milestones, project 
failures, lost jobs.

 Detection: ask everyone on the project what risks they think the 
project faces. Build a list. Discuss it frankly. 

 Extraction: prioritize the list of risks and address the most serious ones 
first. 

 Prevention: actively and aggressively manage risks from the very 
start.

8



Adopting a new technology or methodology 
without well-defined objectives

 Issue: often a TOM is adopted just because it’s new or interesting and 
not because it actually solves a known issue or roadblock.

 Symptoms: lack of progress, late deliverables, confusion about 
direction.

 Consequences: projects drag on forever and/or fail to achieve goals.
 Detection: as a group, describe exactly how this TOM is supposed to be 

helping and why it’s not, i.e., how would things look if the TOM really 
were useful?

 Extraction: work backward from that goal and see if there is a clear and 
useful path.

 Prevention: use pilot projects first and determine feasibility and utility of 
TOM.

9



Misjudging Relative Costs

 Issue: failing to consider the extra time needed to adopt a new TOM 
and/or thinking the TOM will shorter the time required for different 
lifecycle efforts.

 Symptoms: all software lifecycle tasks are taking longer than 
planned/expected.

 Consequences: slipped schedules, missed deadlines, and rude 
surprises.

 Detection: apply Brooks’ breakdown of tasks and see how that 
matches your schedule.

 Extraction: throw out your schedule. Replan from the ground up. 
 Prevention: schedule conservatively from the start. 

10



Allowing new features to creep in

 Issue: scope creep, especially if you assume the new TOM will let 
you do more things and/or do things faster.

 Symptoms: focus on adding new features (esp. in prototype form) 
rather than getting old ones working completely. 

 Consequences: incomplete features, unexpected slips when 
milestones come up.

 Detection: review all planned features as a team and prioritize both 
the features themselves and the initial extent of each feature.

 Extraction: drop features until you can fit within the ‘drop-dead’ 
deadline. 

 Prevention: do the Detection and Extraction steps before starting 
the project. 

11



Allowing the specification to drift or 
change without agreement

 Issue: vague definition of features can lead to serious undetected 
scope creep.

 Symptoms: lack of detailed requirements. Constantly showing off 
“new features” before old ones are complete. Missed milestones.

 Consequences: schedule slip and lack of customer acceptance of 
product.

 Detection: do you have a features list? How detailed are they? 
What is being worked on that is not in the features list?

 Extraction: write a user’s manual for the 1.0 release and stick to it for 
feature completeness. 

 Prevention: create, review, modify, and enforce the specification.

12



Attempting too much, too fast, too 
soon

 Issue: adopting a new TOM and then pushing full speed ahead with 
a mission-critical project.

 Symptoms: the project gets bogged down.
 Consequences: schedule slips and possibly project failure. 

Sometimes loss of confidence in or even abandonment of the TOM.
 Detection: do a hard-nosed match-up of actual progress vs planned 

schedule. 
 Extraction: stop development, scale down the project, train 

developers, set realistic deadlines.
 Prevention: start out stupid, and work up from there. 

13



Abandoning good software 
engineering practices

 Issue: adoption of a new TOM can sometimes lead management to 
think they can abandon best practices in software development.

 Symptoms: managed thinks that development time will be 
shortened and some classic practices can be skipped because of 
the TOM.

 Consequences: lack of benefits of the TOM, leading to disillusion 
and abandonment.

 Detection: unreasonable demands and expectations from 
management.

 Extraction: very hard without getting upper management educated 
and enrolled.

 Prevention: education before the fact at all levels. 

14


	CS 428�Webster #6�Part I
	 Webster #6: Pitfalls of �Modern Software Engineering �
	Managerial pitfalls
	Using the Wrong Developers
	Using the wrong metrics
	Lying to yourself and others
	How project planning often goes:
	Not Identifying and Managing Risks
	Adopting a new technology or methodology without well-defined objectives
	Misjudging Relative Costs
	Allowing new features to creep in
	Allowing the specification to drift or change without agreement
	Attempting too much, too fast, too soon
	Abandoning good software engineering practices

