
CS 428
Facts & Fallacies
of Software
Engineering
(chapters 2-3)

Chapter 2, Section 7: Maintenance

 #41: Maintenance typically consumes 40% to 80% (60% average) of
software costs. Therefore, it is probably the most important life cycle
phase of software.
 Also, large organizations can spent 50% to 80% of their entire IT budget

on maintenance

 Yet it is often given low priority and attention

 “Old hardware becomes obsolete; old software goes into production
every night.”

2

Chapter 2, Section 7: Maintenance

 #42: Enhancement is responsible for roughly 60% of software
maintenance costs. Error correction is roughly 17%. Therefore,
software maintenance is largely about adding new features to old
software, not fixing it.
 “The 60/60 rule: 60% of software’s dollar is spent on maintenance, and

60% of that maintenance is enhancement. Enhancing old software is,
therefore, a big deal.”
 And it represents roughly 1/3rd (36%) of software’s total budget.

 17% on fixings bugs

 18% on adaptive maintenance (getting software to work as
environment changes)

 5% on preventive maintenance/refactor (paying down technical debt)

3

Chapter 2, Section 7: Maintenance

 #43: Maintenance is a solution, not a problem
 Must like SQA, maintenance is sort of a “second-class” domain

 Yet with proper investment of personnel, time, and tools, maintenance
often becomes a far less expensive and less risky option than wholesale
replacement

 Maintenance of existing systems can also avoid the “I hate change”
roadblock

 But upper management often succumbs to the lure of the new car smell

4

Chapter 2, Section 7: Maintenance

 #44: In examining the tasks of software development vs software
maintenance, most of the [lifecycle] tasks are the same – except for
the additional maintenance task of “understanding the existing
product.” This task consumes roughly 30% of of the total maintenance
time and is the dominant maintenance activity. Thus it is possible to
claim that maintenance is a more difficult task than development.
 Key challenge: design a solution within the context of the existing product’s

design.

 Key challenge: figuring out what exploration and tradeoffs led to the current
design.

 Key challenge: finding out that the current design can’t support the
proposed design.

 Cf. Webster, “Controlling IT Costs: Using a Maintenance Architect” [link]

5

http://brucefwebster.com/2013/07/22/controlling-it-costs-using-a-maintenance-architect/

Chapter 2, Section 7: Maintenance

 #45: Better software engineering leads to more maintenance, not
less.
 The better a given system is designed and built, the longer it will stay in

production.

 The better a given system is designed and built, the easier it is to modify.

 Therefore, a well-designed and well-built system will require more
‘maintenance’ – in terms of enhancements and lifespan – than a bad
one.

6

Chapter 3 Quality
Section 1: Quality

 #46: Quality is a selection of attributes
 For Glass: portability, reliability, efficiency, human engineering,

testability, understandability, modifiability
 Mine: reliability, performance, functionality, compatibility, lifespan,

deployment, support, cost
 Priorities and acceptable levels vary based on the project (and, frankly,

your definition of those terms)

 #47: Quality is not user satisfaction, meeting requirements, meeting
cost and schedule targets, or reliability[!]
 Glass acknowledges he’s contradicting himself a bit here on reliability –

frankly, I think he’s a bit incoherent
 My definition of reliability: the system must carry out its functions without

causing unacceptable errors or having an unacceptable downtime.

7

Chapter 3 Section 2: Reliability

 #48: There are errors that most programmers tend to make.
 These range from the “if (a = b)” syntactic typos to omitting what Glass

calls “deep design details”

 This is one reason why the open-source assertion “given enough eyes, all
bugs are shallow” has turned out not to be (sufficiently) true

 #49: Errors tend to cluster
 Various studies show that the majority of errors tend to occur in a small

portion of the code

 Glass doesn’t give a reason; my personal opinion is that this is a
symptom of the “deferring hard problems” pitfall

8

Chapter 3 Section 2: Reliability

 #50: There is no single best approach to error removal.
 Finding, tracking down, and repairing software defects is a very

intensely intellectual and time-consuming exercise. There is no ‘silver
bullet’.

 #51: Residual errors will always persist. The goal should be to
minimize or eliminate severe errors.
 Hence my definition of ‘reliability’: the system must carry out its functions

without causing unacceptable errors or having an unacceptable
downtime.

 You also need to distinguish between the severity of the error and the
likelihood of it occurring (and thus having an impact)

9

Chapter 3 Section 2: Efficiency

 #52: Efficiency stems more from good design than from good
coding.
 Think through likely bottlenecks beforehand; minimize your dependency

upon them.
 Understand that the memory/code tradeoff (pre-computed vs

procedurally-derived, cached vs fetch on demand) is very real.
 “Premature [code] optimization is the root of all evil.” – Don Knuth

 Make sure you understand how to correctly solve the problem before trying
to optimize.

 #53: High-order languages, with appropriate compiler optimization,
can be about 90% as efficient as comparable assembler code.
 Similar debate about bytecode/interpreted languages vs compiled

languages.

10

Chapter 3 Section 2: Efficiency

 #54: There are tradeoffs between size and time optimization. Often,
improving one degrades the other.
 Understand that the memory/code tradeoff (pre-computed vs procedurally-

derived, cached vs fetch on demand) is very real.

 On the other hand, excessive use of memory can sometimes lead to poor speed
performance as well.

11

FOR NEXT WEEK (03/27)

 For this Saturday (03/25)
 LAST PODCAST (#5) due

 Team Status Report due

 Next Monday (03/27)
 Work-in-progress Project Demos!

 F&FOSE chapters 4-7

 Finish Webster #6

 Midterm Review

12

	CS 428�Facts & Fallacies of Software Engineering (chapters 2-3)
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 2, Section 7: Maintenance
	Chapter 3 Quality�Section 1: Quality
	Chapter 3 Section 2: Reliability
	Chapter 3 Section 2: Reliability
	Chapter 3 Section 2: Efficiency
	Chapter 3 Section 2: Efficiency
	FOR NEXT WEEK (03/27)

